1. Trang Chủ
  2. ///

Đề kiểm tra 1 tiết chương III-Nguyên hàm, tích phân, ứng dụng-Đề 5

Đề Kiểm Tra: Đề kiểm tra 1 tiết chương III-Nguyên hàm, tích phân, ứng dụng-Đề 5

Câu 1:

Hàm số nào sau đây không phải là nguyên hàm của hàm số \(y = {e^{ – x}}\)

Câu 2:

Tính tích phân: \(I = \int\limits_{ – 2}^{ – 1} {\sqrt {1 – 4x} } dx\), ta có kết quả

Câu 3:

Cho hình phẳng (H) giới hạn bởi \(y = 2x – {x^2},{\rm{ }}y = 0\). Tính thể tích của khối tròn xoay thu được khi quay (H) xung quanh trục Ox ta được \(V = \pi \left( {\frac{a}{b} + 1} \right)\). Khi đó

Câu 4:

Cho \(f\left( x \right)\) liên tục trên [0;10] thỏa mãn: \(\int\limits_0^{10} {f\left( x \right)} dx = 7\), \(\int\limits_2^6 {f\left( x \right)} dx = 3\). Khi đó, \(P = \int\limits_0^2 {f\left( x \right)dx} + \int\limits_6^{10} {f\left( x \right)dx} \) có giá trị là:

Câu 5:

Tính tích phân: \(I = \int\limits_0^1 {\frac{{{x^3}}}{{{x^4} + 1}}} dx\), ta có kết quả:

Câu 6:

Thể tích V của khốii tròn xoay tạo thành khi ta cho hình phẳng D giới hạn bởi các đường \(y = f(x)\), trục Ox, x=a, x = b (a< b) quay quanh trục Ox được tính bởi công thức:

Câu 7:

Công thức diện tích hình phẳng giới hạn bởi \(y = f\left( x \right)\), \(y = g\left( x \right)\) liên tục trên\(\left[ {a;b} \right]\) và hai đường thẳng \(x = a;x = b\) là

Câu 8:

Tính tích phân \(I = \int\limits_0^1 {x{e^x}dx} \), ta có kết quả:

Câu 9:

Tính tích phân: \(I = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{dx}}{{{{\sin }^2}x}}} \).

Câu 10:

Thể tích của khối tròn xoay tạo thành khi quay hình phẳng D giới hạn bởi các đường \(y = \sqrt {x – 1} \) , trục hoành, x=2 và x=5 quanh trục Ox bằng:

Câu 11:

Cho \(F\left( x \right),G\left( x \right)\) lần lượt là một nguyên hàm của \(f\left( x \right),g\left( x \right)\) trên tập \(K \subset R\) và \(k,h \in R\). Kết luận nào sau đây là sai?

Câu 12:

Công thức nào sau đây dùng để tính diện tích hình phẳng giới hạn bởi các đường y=2x, y=2, x=0, x=1 cho kết quả sai?

Câu 13:

Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục Ox, hai đường thẳng x=a, x=b (a

Câu 14:

Tính tích phân: \(I = \int\limits_{\frac{1}{e}}^e {\frac{{dx}}{x}} \).

Câu 15:

Tính tích phân \(I = \int\limits_0^\pi {x\sin xdx} \), ta có kết quả:

Câu 16:

Tính tích phân \(I = \int\limits_1^2 {\frac{1}{{2x – 1}}dx} .\)

Câu 17:

Đặt \(I = \int\limits_0^{\frac{\pi }{2}} {x\sin xdx} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {{x^2}co{\mathop{\rm s}\nolimits} xdx} \). Khẳng định nào sau đây đúng?

Câu 18:

Cho hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục Ox, hai đường thẳng x = 0, x = 1 . Thể tích khối tròn xoay khi quay hình đó xung quanh trục hoành là:

Câu 19:

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} – 3{x^2} + 2x\), trục tung, trục hoành, đường thẳng \(x = \frac{3}{2}\), ta có kết quả:

Câu 20:

Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là

Câu 21:

Cho \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{cos}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{sin}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \). Biết rằng I = J thì giá trị của I và J bằng:

Câu 22:

Tìm nguyên hàm của hàm số f(x) thỏa điều kiện:\(f(x) = 2x – 3\cos x,F(\frac{\pi }{2}) = 3\)

Câu 23:

Hàm số \(F\left( x \right) = {e^x} – \cot x + C\) là nguyên hàm của hàm số \(f\left( x \right)\) nào?

Câu 24:

Họ nguyên hàm của hàm số: y = sin3x.cosx là

Câu 25:

Nếu gọi V là thể của khối tròn xoay có được khi cho hình phẳng giới hạn bởi các đường \(x = 0,x = \frac{\pi }{4},y = 0,y = s{\rm{inx}}\) quay xung quanh trục Ox thì:

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10
  • Câu 11
  • Câu 12
  • Câu 13
  • Câu 14
  • Câu 15
  • Câu 16
  • Câu 17
  • Câu 18
  • Câu 19
  • Câu 20
  • Câu 21
  • Câu 22
  • Câu 23
  • Câu 24
  • Câu 25

Đáp án: Đề kiểm tra 1 tiết chương III-Nguyên hàm, tích phân, ứng dụng-Đề 5

Đáp án câu 1:
B
2. \( - {e^{ - x}} + C.\)
Đáp án câu 2:
B
2. \(I = \frac{{5\sqrt 3 }}{6} + \frac{9}{2}.\)
Đáp án câu 3:
A
1. \(a = - 7,\;b = 15.\)
Đáp án câu 4:
C
3. \(2.\)
Đáp án câu 5:
C
3. \(I = \frac{1}{4}\ln 2.\)
Đáp án câu 6:
B
2. \(V = \int\limits_a^b {{f^2}(x)} dx.\)
Đáp án câu 7:
A
1. \(S = \left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
Đáp án câu 8:
C
3. \(I = - 1.\)
Đáp án câu 9:
A
1. \(I = 1.\)
Đáp án câu 10:
C
3. \(\int\limits_2^5 {\left( {x - 1} \right)dx} .\)
Đáp án câu 11:
C
3. \(\int {\left[ {kf\left( x \right) \pm hg\left( x \right)} \right]} dx = kF\left( x \right) \pm hG\left( x \right) + C.\)
Đáp án câu 12:
B
2. \(S = \int\limits_0^1 {\left( {2 - {2^x}} \right)} dx.\)
Đáp án câu 13:
A
1. \(S = \pi \int\limits_a^b {{f^2}\left( x \right)} dx.\)
Đáp án câu 14:
C
3. \(I = -2.\)
Đáp án câu 15:
D
4. \(I = \pi .\)
Đáp án câu 16:
D
4. \(I = \frac{1}{2}\ln 3.\)
Đáp án câu 17:
C
3. \(J = \frac{{{\pi ^2}}}{4} + 2I.\)
Đáp án câu 18:
A
1. \(\pi \int\limits_0^1 {{e^{2x}}dx} .\)
Đáp án câu 19:
C
3. \(\frac{9}{{64}}.\)
Đáp án câu 20:
A
1. \(F\left( x \right) = - \cos 2x + C.\)
Đáp án câu 21:
A
1. \(\frac{\pi }{2}.\)
Đáp án câu 22:
D
4. \(F(x) = {x^2} - 3\sin x + 6 + \frac{{{\pi ^2}}}{4}.\)
Đáp án câu 23:
A
1. \(f\left( x \right) = {e^{ - x}} + \frac{1}{{{{\sin }^2}x}}.\)
Đáp án câu 24:
D
4. .\({\tan ^3}x + C.\)
Đáp án câu 25:
D
4. \(V = \frac{\pi }{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right).\)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!